A New Algorithm for Noisy Speech Classification Based on GMM

نویسندگان

  • Zhongbao Chen
  • Zhigang Fang
  • Jie Xu
  • Pengying Du
  • Xiaoping Luo
چکیده

Speech can be broadly categorized into voiceless, voiced, and mute signal, in which voiced speech can be further classified into vowel and voiced consonant. With the ever increasing demand of the speech synthesis applications, it is urgent to develop an effective classification method to differentiate vowel and voiced consonant signal since they are two distinct components that affect the naturalness of the synthetic speech signal. State-of-the-arts algorithms for speech signal classification are effective in classifying voiceless, voiced and mute speech signal, however, not effective in further classifying the voiced signal. In view of the issue, a new algorithm for speech classification based on Gaussian Mixture Model (GMM) is proposed, which can directly classify a speech into voiceless, voiced consonant, vowel and mute signal. Simulation results demonstrate that the proposed algorithm is effective even under the noisy environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Recognition of Noisy Short Utterance Based on Speech Frame Quality Discrimination and Three-stage Classification Model

The noisy short utterance is polluted by noise and corpus is less, so the recognition rate significantly decreased. For improving recognition rate, we proposed the dual information quality discrimination algorithm to classify the speech frames: one is differences detection and discrimination algorithm (DDADA), another is the improved SNR discrimination algorithm (ISNRDA). Based on the above two...

متن کامل

GMM-based classification from noisy features

We consider Gaussian mixture model (GMM)-based classification from noisy features, where the uncertainty over each feature is represented by a Gaussian distribution. For that purpose, we first propose a new GMM training and decoding criterion called log-likelihood integration which, as opposed to the conventional likelihood integration criterion, does not rely on any assumption regarding the di...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015